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A B S T R A C T

Monitoring and mapping of forest stands, including tree species composition can support forest protection and 
management. Sentinel-2 imagery provide a viable data source due to their high spectral, temporal, and spatial 
resolution. However, especially in temperate mixed forests challenges with tree species classification persist, 
mainly due to the high mixing ratio of tree species, which cannot be fully resolved even with the 10 m resolution 
of Sentinel-2 data. Additional challenges are associated with the commonly low number of reference data for rare 
tree species, resulting in low classification accuracy for these species. This study proposes an approach to map 
sub-pixel tree species fractions in mixed temperate forests by combining dense annual multi-spectral Sentinel-2 
time series to target differences between species in phenological relevant periods with synthetically mixed 
training data. This allows for a limited number of pure training samples per tree species, which serves as basis for 
randomized linear mixing to compute a synthetic spectral library. An artificial neural network is trained for 
regression for tree species fractions per pixel. To enhance model robustness and stabilize predictions, we 
implemented this library generation and artificial neural network regression as an ensemble approach. We 
effectively mapped tree species fractions for the federal state of Rhineland-Palatinate, Germany, with Mean 
Absolute Errors of 2.76% to 16.05% and R2 values up to 0.92 – when validated against forest planning data. We 
show that the data augmentation through synthetic mixing allows for a sample size as small as 30 pure pixels per 
class, to sufficiently distinguish nine tree species and one ‘other species’ class, hence substantially increasing the 
operational potential for deployment when reference data for rare species are limited – while simultaneously 
generating accurate and information-rich tree species distributions over large areas of mixed forest.

1. Introduction

Forest information layers are vital for understanding the effects of 
dynamic changes in climate, culture and economy on the multifaceted 
role of forest ecosystems (European Environment Agency, 2007). Precise 
and current data regarding the small-scale spatial distinction between 
coniferous and broadleaf and individual tree species composition are 
essential for fostering sustainable forest management and serve as 
pivotal components within forest monitoring programs (Fassnacht et al., 
2024; Franklin, 2001; Hermosilla et al., 2024). Traditionally, these 

information on forest stand information have been derived from field 
inventories, but it is impossible to sample an entire area with full spatial 
coverage (Bolyn et al., 2018), and data availability is not guaranteed as 
it depends on factors such as accessibility, remoteness, and forest 
ownership (Hemmerling et al., 2021).

Given that traditional forest inventory methods are both resource- 
intensive and time-consuming, the utilization of remote sensing-based 
mapping approaches becomes an appealing strategy to complement 
and optimize extensive forest inventories (Boyd and Danson, 2005; 
Fassnacht et al., 2024). Through recurring observations, remote sensing 
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offers opportunities to monitor forest stands more efficiently, compre
hensively and at shorter intervals (Kangas et al., 2018; Yin et al., 2017) 
and thus can support forest management. However, field inventories still 
remain a fundamental method for operational forest management and 
are also needed for remote sensing based approaches in terms of training 
data, and map accuracy assessment or reference data.

Medium spatial resolution satellite imagery is particularly useful in 
providing detailed information for large or inaccessible areas (Fassnacht 
et al., 2024; Immitzer et al., 2012), while using minimal financial re
sources when using open data (White et al., 2016). Interest in tree 
species classification with satellite images has constantly increased in 
the last decade (Axelsson et al., 2021; Fassnacht et al., 2016; Kollert 
et al., 2021; Lechner et al., 2022; Welle et al., 2022). Although it is still 
remaining a challenging task, because approaches are often not trans
ferable to larger areas and a gap exists between inventory information 
needs, i.e. species composition, and remote sensing capabilities, i.e. 
mapping dominant species, genus or forest type (Fassnacht et al., 2024).

Some operational forest monitoring programs and tree species clas
sification approaches have been successfully implemented with Landsat 
data by employing dense time series and cloud-free image compositing 
(Hermosilla et al., 2024; Hermosilla et al., 2015; White et al., 2014; 
Wulder et al., 2022), the data have been successfully utilized to map 
dominant tree species on a large extend (Hermosilla et al., 2022; Shang 
et al., 2020; Thompson et al., 2015). Since their launch in 2015 and 
2017 (and 2024), Sentinel-2 imagery further improved our monitoring 
capabilities due to their even higher spatial, spectral, and temporal 
resolution. The spatial resolution of 10–20 m with 10 spectral bands in 
the VIS-NIR-SWIR range and the revisit rate of 5 days under cloud-free 
conditions has already been demonstrated improvements in the 
research field of tree species classification (Grabska et al., 2019; Hem
merling et al., 2021; Immitzer et al., 2019; Nasiri et al., 2023), with 
dense time series approaches becoming state-of-the-art (Hemmerling 
et al., 2021). This is motivated by the observation that changing 
reflectance properties in different phenological phases can be used to 
distinguish vegetation types (Grabska et al., 2019). Klosterman and 
Richardson (2017) describe the influence of vegetation development on 
VIS reflectance mainly driven by budburst and leaf expansion in spring, 
and leaf coloring and abscission in autumn. Respectively, observations 
during relevant phases in the phenological development is crucial (Hill 
et al., 2010). However, gaps in the time series during the important 
periods can still occur due to cloud cover. Grabska et al. (2020)
demonstrate how best-available-pixel composites of relevant dates can 
be used in combination with temporal metrics of Sentinel-2 imagery for 
tree species classification. The approach is developed further by utilizing 
temporal metrics of multiple years in relevant phenological phases 
(Grabska-Szwagrzyk et al., 2024). A feasible alternative is to use the 
complete, sometimes gap-filled, time series to improve the differentia
tion in phenologically relevant periods (Axelsson et al., 2021; Blick
ensdörfer et al., 2024; Hemmerling et al., 2021; Lechner et al., 2022; 
Nasiri et al., 2023; Schwieder et al., 2018; Zeng et al., 2020).

Despite recent advances in the large-scale mapping of tree species, 
the substantial local variability in tree species and forest structure at the 
stand level still poses a substantial challenge for currently employed 
classification procedures. This is especially true when considering that 
many temperate forests are characterized by a high mixing ratio, even at 
Sentinel-2’s 10 m resolution. This challenge is further aggravated when 
aiming beyond the most common tree species (Blickensdörfer et al., 
2024).

Hermosilla et al. (2022) proposed an approach for computing class 
membership probabilities and providing them as an indicator of the 
classification’s attribution confidence. This approach enables the 
assignment of tree species assemblages to individual pixels. However, as 
this approach is a quasi-side product of the classifier, it is also bound by 
modern classification frameworks’ biggest drawback, i.e., they usually 
require a huge number of training points. This becomes especially 
problematic for rare tree species as these are usually underrepresented 

in current reference databases (Blickensdörfer et al., 2024; Hemmerling 
et al., 2021) due to them being developed with focus on terrestrial forest 
management and not specifically designed for remote sensing’s needs. 
Bolyn et al. (2022) proposed an approach using a convolutional neural 
network to map tree species proportions, targeting the issue of high tree 
species mixing ratio directly. While this approach has already yielded 
reliable results, it has not yet fully exploited the potential offered by time 
series.

While originally being developed as a machine learning-based 
alternative to traditional spectral mixture analysis (e.g., MESMA 
(Roberts et al., 1998), WASMA (Somers and Asner, 2014)), Okujeni 
et al.’s (2013) approach of regression-based unmixing using syntheti
cally mixed training data presents several beneficial traits that might be 
instrumental for the requirement of mapping per-pixel mixtures of tree 
species.

Recent studies show, that the approach can be extended to multi- 
spectral (Cooper et al., 2020) and multi-temporal (Okujeni et al., 
2021; Schug et al., 2018) or even time series-based data (Pham et al., 
2024; Suess et al., 2018), but not using a dense gap-filled time series yet. 
It was applied to differentiate various mixtures of different land cover 
classes (Borges et al., 2022; Okujeni et al., 2018; Schug et al., 2024; 
Stanimirova et al., 2022) and to distinguish between different leaf types 
in forests like needleleaf and broadleaf forest (Cooper et al., 2020; 
Okujeni et al., 2021) and different forest cover type fractions (Bao et al., 
2024). Pham et al. (2024) advanced the approach by employing artifi
cial neural network (ANN) regression, a technique that offers benefits 
such as multi-class regression, which facilitates predictions across mul
tiple categories, and an optimized multi-target loss function (Pham 
et al., 2024).

This approach is essentially turning a classification task into a 
regression approach with the considerable advantage of being based on 
a data augmentation step to synthetically generate a large amount of 
training data from only a few confirmed endmember locations. The 
necessity for a substantial quantity of training data, despite a limited 
availability of samples for certain classes can help addressing the re
quirements of mapping tree species in mixed forests, particularly when 
including rare tree species for which reference data are not abundantly 
available in traditional forest inventory databases. The approach of 
regression-based unmixing using synthetically mixed training data has 
not been evaluated using a dense gap-filled time series yet. However, 
this approach offers the potential to differentiate tree species by 
requiring only a small number of reference data to utilize the spectral 
and phenological differences between tree species and predict tree 
species fractions in mixed forests.

Consequently, the overarching goal of this study is to evaluate the 
potential of mapping sub-pixel tree species mixtures in mixed temperate 
forests at 10 m spatial resolution based on limited reference information 
for its subsequent usage in operational forest management.

For this purpose, the following research questions were formulated: 

(1) How accurate are tree species mixture maps derived from a 
Sentinel-2 time series and machine learning regression with 
synthetic mixing data augmentation?

(2) What quantity of reference data is required to achieve sufficient 
accuracy, and still enable operational deployment by a forest 
survey?

2. Materials

2.1. Study area

Rhineland-Palatinate (RLP), a federal state of Germany, covers an 
area of about 19,850 km2 (Fig. 1). With a combined forest cover 
exceeding 8080 km2, or 41% of the state’s total area, Rhineland- 
Palatinate is one of the most densely forested states in Germany 
(Federal Ministry of Food and Agriculture, 2014; Thünen-Institute, 
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2024), with 46.1% and 25.6% of forest areas being owned by munici
palities and state, and 26.7% by private entities, respectively.

The forest area is divided into deciduous (62.7%) and coniferous 
(34.1%) tree types, while the remaining 3.2% of the area comprises 
temporarily unforested areas (e.g. due to calamities). The most 
frequently occurring tree species are European Beech (Fagus sylvatica), 
Sessile Oak (Quercus petraea) and Pedunculate Oak (Quercus robur), 
Norway Spruce (Piecea abies), Scots Pine (Pinus sylvestris), and Douglas 
Fir (Pseudotsuga menziesii) (in the subsequent text, common Oak and 
pedunculate Oak are collectively referred to as ‘Oak’). These tree species 
collectively cover approximately 23.1%, 21.5%, 14.9%, 9.2%, 7% (i.e. 
75.7% in total) of the forested area respectively (Thünen-Institute, 
2024). However, more rare tree species can be locally important, like 
silver Fir (Abies alba, 0.7%), European Larch (Larix decidua, 2.3%), 
sycamore Maple (Acer pseudoplatanus, 2.5%), black Alder (Alnus gluti
nosa, 1.3%) and Birch (Betula pubescens and pendula, 3.5%). A list of tree 
species used for fraction prediction can be found in Table 1. In the 
following text, the tree species and groups listed are referred to as “tree 
species”, despite the potential for taxonomic inaccuracy.

The low mountain ranges of the Eifel, the Hunsrück, and parts of the 
Palatinate exhibit diverse forest growth conditions owing to their cool 
and precipitation-rich mountain climate, which contrasts with the warm 

and dry continental climates prevalent in the Middle Rhine and Moselle 
Valleys, as well as the Upper Rhine Lowlands. Reflecting the variability 
in climate and natural surroundings, the study area is partitioned into 16 
ecoregions, of which are 14 of relevant size, with unique forest growth 
conditions (Gauer et al., 2005). The weather conditions in Rhineland- 
Palatinate during the years under investigation were characterized by 
high average annual temperatures of 11.0 ◦C to 11.2 ◦C in 2020, 2022 
and 2023, making them the three warmest years on record. Precipitation 
sums of 701 mm was recorded in 2022, the year of prediction in this 
study, which were relatively dry compared to the long-term average. 
(Competence Center for Climate Change Impacts - Rhineland-Palatinate, 
2024).

2.2. Reference data

2.2.1. Forest planning data
The training (Section 3.1) and validation data (Section 3.5) used in 

this study were extracted from a statewide forest planning dataset that 
was provided by the State Forest Service of Rhineland-Palatinate and 
comprised stand-level information of state, communal and private for
ests. The data comprises information about the stocking tree species 
such as covering area, species proportion, timber volume and growth 

Fig. 1. Study area, i.e., Rhineland-Palatinate, Germany; a) Forests and Forest ecoregions after Gauer et al., 2005. (Data source: State Office for Surveying and 
Geographic Information Rhineland-Palatinate, 2024); b) Sentinel-2 Clear sky observations in the study area in 2022; c) Sentienel-2 Clear sky observations (07–2019 
to 06–2023) used for the time series reconstruction.
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rates (i.e., inventory data) as well as the amount of wood to be har
vested, or planting actions (i.e., planning data).

The inventory data were gathered by forest experts who visit and 
examine each forest stand of the forest enterprise in an exhaustive field 
survey where the size of a stand can vary between 0.5 ha and 20 ha. 
Within this survey procedure, precise geographic location and extent of 
the forest stands are stored in a GIS database. A multitude of silvicultural 
attributes are then assigned to each forest stand geometry, which are not 
further georeferenced within the stand. This can been seen as a major 
challenge for its usage in remote sensing applications (Stoffels et al., 
2015). Each prominent tree species with an overall covering area above 
0.1 ha is stored as an individual database entry recording means of its 
stock layer (top layer, intermediate layer or ground layer), age, devel
opment phase, covering area (i.e., aggregated crown projection area), 
stock density and yield level. A renewal-interval of ten years is 
mandatory but not synchronized among the forest enterprises, such that 
the reference date can vary between regions.

The assessment of the inventory data during the field survey is 
realized by visual expert judgement that is complemented by stand-wise 
angle count sampling and height measurements in order to validate 
basal areas, stock densities, tree species covering areas and proportions 
as well as yield levels. However, the application, number and locations 
of these measurements are not predefined by a statistical sample-design 
but subjectively chosen by the expert to cover the stand variability. In 
case the expert conducts angle count-sampling, the software provides an 
interface where the angle count-sampling results (i.e. number of 
observed tree species at the chosen sample location) are attached to the 
respective tree-record in the database. Basal areas, stock densities, tree 
species covering areas and proportions are then derived directly from 
the angle count sampling results, and not from the visual expert judge
ment. Validation is also supported in the provided planning-software by 
means of digital orthophoto interpretation (covering area measure
ments) and LiDAR-derived Canopy Height Models (height 
measurements).

Due to this time-expensive full-census survey procedure, the gath
ered information on the forest stand- and enterprise level is considered 

very precise, although no quantitative accuracy metrics can be provided 
in general. In the case of recording rare tree species, this full-census 
survey can be superior to sample-based procedures due to insufficient 
sample-sizes that prevent a detection of rare events.

2.2.2. National forest inventory
This study utilizes information derived from the latest national forest 

inventory (NFI) from 2021 and 2022. The NFI involves the collection of 
data on various forest and tree parameters (e.g., species, height, diam
eter at breast height, etc.) in a network of almost 80,000 sampling points 
distributed throughout Germany. The Thünen-Institute uses this sample 
to estimate forest properties for both the individual federal states and 
entire Germany (Federal Ministry of Food and Agriculture, 2022). In this 
study, the state-wide estimation of the tree species-specific areas of the 
forest in RLP were employed for the purpose of cross-comparing area 
estimates (Thünen-Institute, 2024).

2.2.3. Digital orthophotos
We used openly available 20 cm R/G/B digital orthophotos for visual 

inspection of the study area of the years 2022 and 2023 provided by the 
State Office for Surveying and Geographic Information Rhineland- 
Palatinate. The acquisition dates vary across the study area, but the 
whole area is covered with a mosaic of images of May 05, 2022, June 06, 
2022, June 18, 2022, July 02, 2022, July 03, 2022, July 17, 2022, May 
25, 2023, June 01, 2023, June 04, 2023, June 06, 2023, June 15, 2023, 
August 06, 2023, August 08, 2023, August 09, 2023.

2.3. Sentinel-2 time series

This study utilized all available Sentinel-2 A/B Level 1C images with 
cloud coverage below 70% from July 2019 to June 2023 to reconstruct a 
gap-filled time series for 2022. All images were processed to level 2 
using the Framework for Operational Radiometric Correction for Envi
ronmental monitoring (FORCE) version 3.7.12 (Frantz, 2019). The 
processing includes cloud and cloud shadow masking using a modified 
version of the Fmask algorithm (Frantz et al., 2018). Radiometric 
correction includes a radiative transfer based atmospheric correction 
(Frantz et al., 2016a), topographic correction using an enhanced C- 
correction (Buchner et al., 2020; Kobayashi and Sanga-Ngoie, 2008), 
adjacency effect correction, as well as bi-directional reflectance function 
correction (Roy et al., 2017). The ImproPhe algorithm was employed to 
adjust the spatial resolution of the 20 m bands of Sentinel-2 to 10 m 
(Frantz et al., 2016b). The data were co-registered using Landsat 8 to 
ensure high multitemporal geolocation stability (Rufin et al., 2021; Yan 
et al., 2018). During level 2 processing, the images were reprojected to 
EPSG:3035 and were divided into rectangular tiles (30 km × 30 km), 
representing a data cube structure for efficient higher-level processing.

The availability of data per pixel is not solely dependent on cloud 
coverage. Approximately 75% of the study area lies within the over
lapping footprints of orbits 8 and 108 (Fig. 1b). For the entire target year 
2022 between 20 and 40 clear sky observations can be used in the 
overlap region, while areas with single coverage have only between 10 
and 15 observations in the northwest and 15 to 20 observations in the 
southeast (Fig. 1b). With the applied time series reconstruction approach 
(Section 3.2), the number of used clear sky observations used for 
reconstruction was increased to 90 to 150 in the overlap region and 
between 45 and 60 in the shoulder regions (Fig. 1c).

3. Methods

The employed workflow consists of five major parts (Fig. 2), which 
are described in detail in the following subsections, i.e. training data 
collection (3.1), Sentinel-2 processing and feature engineering for 2022 
(3.2), tree species mixture modeling (3.3), inference of tree species 
mixtures and variability (3.4), and validation in forest stands (3.5). In 
addition to the validation, a model deviation product was computed and 

Table 1 
Tree species groups and auxiliary classes, with number of training samples 
overall, and for covered forest ecological region.

Name Description No. of 
samples

No. of 
ecoregions

Beech Pure pixels of species European 
Beech (Fagus sylvatica)

57 14

Oak Trees of species Sessile Oak (Quercus 
petraea) and Pedunculate Oak 
(Quercus robur)

58 12

Maple Pure pixels of species sycamore 
Maple (Acer pseudoplatanus)

49 11

Alder Pure pixels of species black Alder 
(Alnus glutinosa)

32 9

Other 
deciduous 
trees

Pure pixels of genus Poplar 
(Populus), cherry tree (Prunus), Birch 
(Betula), Ash (Fraxinus), Robinia 
(Robinia), and sweet chestnut species 
(Castanea sativa)

57 11

Spruce Pure pixels of species Norway Spruce 
(Piecea abies)

49 10

Douglas Fir Pure pixels of species Douglas Fir 
(Pseudotsuga menziesii)

55 9

Pine Pure pixels of species Scots Pine 
(Pinus sylvestris)

45 11

Larch Pure pixels of species European 
Larch (Larix decidua), Japanese 
Larch (Larix kaempferi)

41 10

Fir Pure pixels of species European 
silver Fir (Abies alba)

31 8

Ground Pure pixels of bare soil, grass or low 
shrub

32 12

Shadow Pure Pixel of shadowed ground 30 10
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further analyzed.

3.1. Training data collection

In this study we target nine tree species, one joint class for other 
deciduous trees, and two background classes, shadow and ground 
(Table 1). We collected training data in all ecoregions, where pure 
stands were present, to cover different phenological conditions, i.e. 
variations in sprouting time, leaf senescence, or varying reflectance 
characteristics of the same tree species within the study area. This was 
crucial to cover within-class variance in the training data for better 
generalization capabilities. To achieve this, the forest planning data 
described in Section 2.2.1 were used to locate pure stands together with 
spatially high resolution digital orthophotos from 2022 and 2023 to 
manually select pure pixels of highest quality for each target class. The 
orthophotos were used to ensure that only dense crowns (i.e., gap 
closure) in homogeneous stands were sampled to avoid influences of 
understory trees (potentially other tree species) and ground surface (soil 
or vegetation other than trees). We selected pure stands with a minimum 
size of 0.2 ha to ensure a reasonable distance of multiple Sentinel pixels 

to the stands’ border. For the class of other deciduous trees (other DT), 
pure stands of the following rare species were selected: Poplar, cherry 
tree, Birch, Ash, Robinia, and sweet chestnut. To provide suitable spatial 
distribution of the data, we covered all forest-ecoregions defined by 
Gauer et al., 2005, when pure stands were present for each tree species 
and background class. In addition, the sample collection also accounts 
for varying topographic conditions, including differences in altitude and 
aspect ground and shadow samples were selected in areas of bare soil 
and vegetation other than trees, and in shadowed forest borders 
respectively. We deliberately picked relatively few, but high-quality 
pixels, to demonstrate the effectiveness of the proposed method with 
respect to training data limitations, i.e., aiming at a number of training 
sites that would be realistic for a state service to provide on a regular 
basis.

The number of samples per tree species, the used tree species for each 
class, and their coverage within the forest ecological regions is shown in 
Table 1. Training samples could not be found for every class in every 
ecoregion, especially samples for Fir and Alder could only be identified 
in a limited number of regions.

Fig. 2. Workflow for the tree species mapping approach consisting of training data and satellite image pre-processing, model training and application, 
and validation.
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3.2. Sentinel-2 feature engineering

We used bands 2–4 (visible light), 5–7 (red edge), 8 and 8a (near- 
infrared) and 11–12 (short wave infrared) as input features for later 
model training.

The ANN regression approach, as well as the synthetic mixing, 
technically requires an equidistant and gap-free time series, as well as a 
dense temporal quantification is needed to retain spectral-temporal 
differences and distinctions of phenological development between tree 
classes (Blickensdörfer et al., 2024; Hemmerling et al., 2021; Schwieder 
et al., 2016). To achieve this we used the time series reconstruction 
method of Bolton et al. (2020), who proposed using weighted splines of 
observations from multiple years. The strength of this method relies on 
consistent –forest phenology between years to overcome large data gaps 
such as those found in single orbit regions (Fig. 1b-c). We adopted this 
method while making minor adjustments, which we describe below. We 
implemented the reconstruction algorithm as a user-defined R-function 
in the higher-level module of FORCE (the code can be accessed on 
GitHub https://github.com/davidfrantz/force-udf/tree/main/rstats/ts 
/spline-reconstruction). Prior to the pixelwise reconstruction, an 
outlier detection was performed to decrease artifacts resulting from 
omission errors in the cloud detection (Frantz, 2019). The reconstruc
tion was then calculated for the target year 2022, including observations 
from the two previous years 2021 and 2020 - if they were sufficiently 
similar.

The similarity was determined by calculating the Euclidean distance 
between the spline function of 2022 using observations from 07/2021 to 
06/2023 and the spline functions of 2021 (using observations from 07/ 
2020 to 06/2022) and 2020 (using observations from 07/2019 to 06/ 
2021). The inclusion of observations in six months before and after the 
target year ensured reliable spline calculation in winter months. The 
Euclidean distance resulted in weights for the observations for 2020 and 
2021. If the Euclidean distance of the spline function of one year was 

greater than the distance to the average time series of 2022, the obser
vations of the respective year were disregarded. The final reconstruction 
was then calculated using a combined dataset of weighted observations.

To illustrate this approach, Fig. 3a-c) displays the result of the spline 
reconstruction of a pixel located in a non-overlapping Sentinel-2 orbit, 
as well as the lack of sufficient observations in fall 2022, which could be 
successfully reconstructed with help of observations from 2020 and 
2021. Fig. 3d-f) demonstrates that if the time series are not sufficiently 
similar, for example due to bark beetle-induced disturbances, the 
reconstruction will not include observations from previous years.

The maximum allowable weight parameter for previous years has 
been set to 0.2, thus past years only influence the current year’s pre
diction noticeably if there is a big data gap in a specific part of the 
current year. We used a cubic smoothing spline using the stats package 
(R Core Team, 2021) in R with a smoothing factor of 0.5. The recon
struction was calculated for all pixels within the forest mask deduced by 
the Copernicus high resolution layer forest type (Copernicus - Land 
Monitoring Service, 2024).

The reconstruction was calculated for the year 2022 at 10-day tem
poral resolution for all 10 spectral bands from March to November, 
hence effectively using Sentinel-2 data from 2019 to 2023.

3.3. Tree species mixture modeling

For modeling tree species fractions, we employed multi-output ANN 
regression, with training data based on synthetic mixing of endmembers. 
Firstly, a synthetic training dataset was generated, comparable with the 
synthetic spectral library introduced by Okujeni et al., 2013. For this 
purpose, the time series of the target year for March to November for 
every interpolated Sentinel-2 band were extracted at the locations of the 
training sample. This resulted in feature vectors of 280 elements (10 
spectral bands for 28 time steps) for every sample point serving as an 
endmember. Using these pure endmembers, 256,000 training vectors (v)

Fig. 3. Spline-based time series reconstruction for two example pixels. (a-c): A healthy Beech pixel in a Sentinel-2 single-orbit area; (d-f): A pixel of pure Spruce forest 
affected by a bark beetle attack in the year 2022 (a, d) all observations of 2020, 2021, and 2022, each year with observations six months before and after for a 
successful spline calculation; (b, e) spline functions of 2020, 2021, 2022 and mean function of 2022 with corresponding euclidean distance values (dyear) to the 2022 
spline; (c,f): weighted spline function with observations from 2020 to 2022 and the weights (Wyear) of the corresponding years (weight of 2022 equals one).
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were synthetically mixed by linear combination of endmembers (ej) and 
fractions (fj) in a random manner, with the condition of summing up to 
1, with a mixing complexity of up to m = 3, using the formula: 

vi =
∑m

j=1
fj*ej (1) 

The calculation contained one to three randomly selected endmem
bers with a distinct likelihood of each mixing complexity. Synthetic data 
augmentation by linear combination has been shown effective to 
improve model training (Zhang et al., 2017). The fractions were selected 
at random with the condition that they are positive and that their sum 
equals one. Pure endmembers were also included in the spectral library, 
i.e. a mixing complexity of one. Within-class mixing was permitted as 
well, hence also generating synthetically mixed feature vectors from 
endmembers of the same tree species, i.e., to account for regional vari
ability, e.g. in terms of phenology. Two matrices stored the resulting 
synthetic training data and a 12-node vector of endmember class frac
tions for each data point, i.e., the feature matrix, and the predictor 
matrix.

Secondly, ANN models were trained. For this study, we used a Keras 
model architecture with the TensorFlow package version 2.10.0 
(TensorFlow, 2023) and Python version 3.9.10 (Python Software 
Foundation, 2022). The network architecture is fully connected and 
employs five hidden layers, each with 128 nodes. The feature vector 
used was a synthetic mixed spectrum, containing 280 nodes, to predict 
nine tree species, other deciduous trees, ground, and shadow fraction, 
stored in the predictor matrix. The training process was performed over 
250 epochs using a learning rate of 0.001 and a learning rate decay of 
0.5 every epoch, with an Adam optimizer. The used batch size of 256 
synthetic vectors resulted in 1000 training iterations per epoch. The 
Mean Absolute Error (MAE) was used as the loss function for training, 
which calculates the difference between all predicted and actual fraction 
vectors within one training iteration. An average MAE was also calcu
lated per epoch to evaluate performance and progress. The ANN training 
process was based on the approach developed by (Pham et al., 2024).

One consequence of using the synthetic mixing approach with a high 
degree of randomness is that the results of individual models exhibit 
variability. Thus, we employed an ensemble approach, as recommended 
by Okujeni et al. (2018). Hence, the steps for constructing synthetic 
training data and training a multi-output ANN were executed ten times, 
resulting in individual trained models to account for inter-model 
uncertainty.

3.4. Tree species mixture inference and variability

The trained ANN models were applied to the corresponding recon
structed Sentinel-2 time series data-cubes. The annual prediction was 
performed by pixel-wise application of the n = 10 models, followed by 
averaging the different predictions (x1..n), to account for inter-model 
uncertainty: 

AVGspec =
1
n
*
∑n

i=1
xspec,i (2) 

For efficient large-scale calculation, we used 30 by 30 km tiles 
defined by FORCE, to implement parallel processing in Python. This 
ensemble prediction resulted in a 12-band raster containing the average 
tree species, ground and shadow fractions for the entire study area’s 
forest extent. The inference of the tree species mixture maps was 
completed with L1-normalization of the average prediction to ensure 
that the sum of fractions for every pixel equals 100%: 

AVG’spec = AVGspec

/
∑12

j=1
AVGj (3) 

This implementation additionally allowed an analysis of the mean 

absolute deviation (MAD) per tree class between all individual models, 
which was calculated as: 

MADspec =
1
n
*
∑n

i=1

⃒
⃒xspec,i − xspec

⃒
⃒ (4) 

where x1..n are the individual model predictions and x is the average 
prediction of n models. The resulting deviation per class was sampled 
using two different strategies: a pixel-based approach and a polygon- 
based approach, averaging the MAD values using the validation poly
gons, and depending on the species. The polygon-based approach allows 
for an examination of the relationship between the prediction error of 
the ensemble prediction and the MAD within each validation polygon. In 
addition, we have calculated and sampled the deviation between five 
ensemble approaches to analyze the effect of ensemble application.

3.5. Validation in forest stands

The average fraction raster was validated using information about 
tree species proportions within the polygon-based forest planning data 
described in Section 2.2.1. To ensure dense crown conditions in vali
dation data, we selected polygons that contain fully grown trees, i.e. 
trees of stage dimensioning or maturation and data vintage newer than 
2017. The units were required to exclusively contain trained tree spe
cies. Additionally, individual polygons must exceed 1 ha. The proportion 
of species within the forest unit was determined by the area of each tree 
species present. To further increase the reliability of the validation data, 
some validation polygons were excluded due to oddly shaped geome
tries unfeasible for validation (e.g. slim and tubular or separated sub- 
polygons) or inconsistencies in the recorded information detectable 
with the orthophoto (e.g. disturbance or high crown sparseness). The 
final validation dataset comprised 2621 polygons, distributed across the 
entire study area in forest owned by state or municipalities with high 
spatial distribution per species where possible (Table 2).

Due to the data design of the reference dataset, fraction validation on 
pixel level was not possible. Polygon-based validation is a well- 
established method for evaluating fraction maps (Cooper et al., 2020; 
Okujeni et al., 2021), wherein the average predicted fraction of all pixels 
within the polygon of one class - referred as predicted proportion - is 
compared with the reference proportion. In accordance with the data 
design, the validation does not consist of a map assessment for the entire 
predicted map, but rather, it is a validation for the utilization of this 
method within forest stands. Due to the nature of the reference data and 
their collection in the field for the purpose of forest management, 
additional processing of the inferred tree species fraction maps was 
necessary before validation. The forest unit polygons only contain the 
proportion of tree species relative to the forested area, i.e., non-forested 
and shadowed areas are unaccounted for. As such, statistical validation 
of the ground and shadow fraction was not possible within the polygons. 
To account for Spruce stands affected by bark beetle outbreaks, we 
implemented a forest loss mask after the approach of (Dutrieux et al., 
2021; Stoffels et al., 2024) to remove afflicted stands for validation. We 
used the Root Mean Squared Error (RMSE), and the MAE as error sta
tistics (Willmott and Matsuura, 2005), as well as the R2, slope and 
intercept from ordinary least squares regression. The validation design 
was divided into two levels. The first level assessed the broad-leafed and 
needle-leafed tree type fractions only (i.e., the sum of corresponding 
species, Table 2). The second level was carried out at individual tree 
species. Two distinct approaches were employed to examine the second 
level error metrics. The first approach utilized all validation polygons for 
error metric calculation, thereby representing the overall performance 
of each tree species. The second approach employed only polygons 
where an individual tree species occurred in the validation data, i.e., 
excluding all validation polygons with a proportion of 0%. We deemed 
this distinction necessary for various reasons. The map may be evaluated 
with reference to how effectively the fractional estimate of the species 
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was generated where the corresponding tree species knowingly exists. It 
is also relevant to assess the model’s overall performance, i.e., including 
whether species’ absence was accurately predicted, or commission er
rors are frequent. As our validation dataset cannot be balanced across 
the entire fractional data range across all the tree species, both assess
ments need to be considered, especially with regard to the frequency of 
occurrence of given tree species, i.e., in a similar notion as evaluating 
producer’s and user’s accuracy in a classification.

3.6. Analysis of training sample size effect

To analyze what quantity of training data is required to achieve 
sufficient prediction accuracy, we performed an ablation experiment by 
systematically degrading the number of training points. In an iterative 
manner, we used a subsample of the available pure pixels within the 
training dataset (see Section 3.1) by randomly selecting 1, 2, 4, 6, […], 
or 34 pure pixels for each tree class. This resulted in 18 degraded 
training datasets. For degraded training dataset, the workflow of spec
tral library generation, ANN training, and fraction inference (described 

Table 2 
Numbers of validation polygons considered where tree species are present.

deciduous species coniferous species

Beech Oak Maple Alder Other DT Spruce D. Fir Pine Larch Fir

Level 1: Number of samples 2121 2024
Level 2: Number of samples 1541 1006 266 201 619 1072 931 644 613 72
Number of ecoregions 14 14 13 10 14 13 13 13 14 7

Fig. 4. Tree species fraction map of Rhineland-Palatinate, Germany. The dominant class and its fraction are visualized using the HSV-color space with a species 
specific hue, saturation as fraction of the dominant tree species, and value as the sum background and shadow fraction. A detailed description of the color coding 
process is described in the supplemental. The two example areas are visualized in detail in Fig. 5.
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in Sections 3.3 and 3.4) was repeated. The resulting predictions were 
validated as described in Section 3.5 to investigate the method’s per
formance in relation to an increasing sample size.

4. Results

4.1. Tree type and tree species mixture maps

Fig. 4 shows the resulting tree species fraction map of the study area. 
Details about the visualization approach using the HSV-color space are 
explained in the supplementary document (Section 1). Maps of indi
vidual tree species fractions of the entire study area can be found in the 
supplementary document too (Figs. A4 to A15). The tree species pro
portions per forest ecological region and whole Rhineland-Palatinate of 
dense crown forest pixels are shown in Table 3. The difference between 
the official number of total area of forest of RLP by (Landesforsten, 
2012) and the forest area proposed in this analysis is attributable to the 
use of the forest mask of Copernicus, which uses a different definition of 
forest, in combination with the applied forest loss mask, which accounts 
for an area of 673.96 km2.

Fig. 5 presents representative examples for two validation sites (lo
cations in Fig. 4), showing the results of the tree type (level 1 – RGB color 
coded) and tree species maps (level 2 – HSV color coded), also showing 
the reference and predicted proportion within the polygon in the bar 
chart. Fig. 5a-c) illustrates a heterogeneous forest comprising Beech, 
Spruce, and Larch. The stand proportion of Spruce is underestimated by 
8%, while the stand proportion of Larch is overestimated by 3%, indi
cated by the bar chart comparison. Fig. 5d-f) depicts a heterogeneous 
stand comprising Beech, Oak, and Pine. The predicted distribution of 
tree species shows a slight underestimation of the proportion of Pine and 
a slight overestimation of Beech. A detailed description of this two 
example polygons can be found in the supplementary (Section 2).

We have evaluated the predicted area of each tree species with the 
state-wide projection of the NFI dataset described in Section 2.2.2 
(Fig. 6). Our approach slightly underestimates the total predicted area of 
the prevalent tree species Beech and Oak, while rare species like Alder 
and Larch are overestimated. Spruce is underestimated in relation to the 
NFI assessment.

4.2. Validation in forest stand

4.2.1. Level one: Leaf type proportions in forest stands
The validation of the leaf type mixture maps resulted in R2 values of 

0.91 for both forest types (Fig. 7). The slopes of the models are close to 1, 
with a slight tendency for underestimation of tree type fractions for high 

reference proportions. The values of MAE and RMSE are 8.91% and 
12.71% respectively for both leaf types. The distributions of the re
siduals indicate a slight overestimation for deciduous species for low 
proportions and a slight underestimation for coniferous species for high 
proportions.

4.2.2. Level two: Tree species proportion in forest stands
At the second level of validation, we compared the tree species 

mixture map with species-specific validation data in forest stand poly
gons. We used two different approaches, representing the overall model 
performance and the presence-only performance. Fig. 8 shows the 
scatterplots and regression models of each individual tree species, while 
the respective error metrics and R2 can be found in Table 4. The 
regression models for deciduous tree species achieve R2 values ranging 
from 0.41 to 0.83. All deciduous species exhibit a tendency to be 
underestimated with increasing validation proportions, indicated by 
slopes between 0.98 and 1.19 (apart from other DT class). It is noted that 
the model can only underestimate the real value, as prediction and 
references values are limited between 0% and 100%. The best error 
statistics for presence-only performance are observed for Alder with 
MAE of 11.64%, and other DT with RMSE of 16.87%, while best error 
statistics for overall performance are observed for Alder, with MAE and 
RMSE of 3.17% and 6.75% respectively. Beech exhibits the highest er
rors for overall performance, with MAE of 9.12% and RMSE of 14.21%. 
With regard to presence-only performance, Oak exhibits the highest 
error values, with MAE of 14.61% and RMSE of 20.52%.

For coniferous species, the underestimation with increasing valida
tion proportions is again noticeable, due to the 100% limit. Slopes are 
close to, or higher than one, with values between 0.97 and 1.27, except 
for the Fir species, which has a slope of 0.42. Nevertheless, the R2 values 
indicate reliable predictions for Spruce, Douglas Fir, Pine, and Larch, 
with values between 0.66 and 0.92. The predictions of Fir in terms of 
overall performance appears to be more unreliable, with an R2 of 0.27. 
In contrast, the model for presence-only performance achieves an R2 of 
0.66, which is considerably higher. It is important to exercise caution 
when interpreting the results for the Fir species, given the high number 
of validation polygons that do not contain this species (2549) and the 
low number of validation polygons with presence (72). However, Fir 
exhibits the best error statistics for overall performance, with MAE and 
RMSE of 2.76% and 5.61%, respectively and presence-only perfor
mance, with MAE and RMSE of 7.49% and 12.18%. Douglas Fir exhibits 
the highest error statistics. Notably, the MAE (16.05%) and RMSE 
(20.85%) in the presence-only performance are higher than those 
observed for the other species.

Table 3 
Tree species proportion [%] per forest ecological region. 40: Sauerland; 41: Bergisches Land; 43: Niederrheinische Bucht; 44: Nordwesteifel; 45: Osteifel; 46: Mit
telrheintal; 47: Westerwald; 48: Taunus; 65: Oberrheinisches Tiefland und Rhein-Main Ebene; 66: Hunsrück; 67: Moseltal; 68: Gutland; 69: Saarländisch-Pfälzisches 
Muschelkalkgebiet; 70: Saar-Nahe Bergland; 71: Westricher Moorniederung; 72: Pfälzerwald.

Ecoregion Forest [km2] Beech Oak Maple Alder Other DT Spruce Do. Fir Pine Larch Fir

RLP 7272.81 22.73 18.48 6.2 5.16 16.39 9.31 5.76 8.95 4.44 2.57
40 69.27 21.12 24.46 10.86 11.84 16.79 2.73 3.38 2.21 4.44 2.17
41 98.99 19.66 23.8 7.4 11.53 15.75 6.56 5.27 2.96 3.17 3.89
43 0.20 4.19 6.96 14.82 2.97 40.56 2.66 4.35 6.14 13.92 3.42
44 579.46 18.6 14.1 4.29 5.25 12.27 26 8.02 3.53 3.31 4.64
45 850.86 23.21 20.47 7.53 4.73 13.2 10.77 8.18 5.2 3.83 2.88
46 282.28 18.22 19.92 10.33 3.08 31.36 1.25 2.5 3.39 7.93 2.03
47 657.98 33.4 13.6 10.67 8.7 17.2 4.11 2.61 2.25 5.59 1.88
48 213.6 39.67 19.8 6.15 3.65 14.4 3.18 3.96 2.9 4.82 1.46
65 429.79 7.33 14.89 5.72 3.88 36.58 1.34 1.8 16.33 10.06 2.07
66 1275.21 24.48 19.08 4.97 4.09 12.95 18.75 6.16 3.3 3.52 2.71
67 277.59 17.86 21.88 8.74 2.07 26.67 2.28 7.26 5.13 5.32 2.8
68 218.28 29.27 13.2 5.67 3.47 18.46 7.43 6.52 8.94 5.44 1.62
69 169.52 19.89 20.37 8.53 5.6 21.8 6.58 4.23 5.27 5.44 2.3
70 808.35 21.38 32.3 7.41 3.09 20.82 3.05 4.34 3.12 3.11 1.39
71 32.90 13.05 13.64 2.42 8.46 14.14 10.78 5.8 25.07 4.93 1.72
72 1304.25 22.16 12.4 2.63 7.03 7.8 6.32 7.49 27.79 3.41 2.98
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4.3. Ensemble deviation

The analysis of the ensemble deviation using an example polygon is 
illustrated and described in detail in the supplementary (Section 3). 
Fig. 9a) depicts the distribution of the MAD in dependence on the 
average of the predicted fractions using the two sampling strategies 
described in Section 3.4. The polygon-based view demonstrates a slight 
yet consistent rise in the deviation with rising fractions, reaching a peak 
(MAD of 5.64% in average) at approximately 40% average fraction, after 
which there is a slight yet continuous decline. In contrast, the pixel- 
based metrics shows a rapid increase in deviation with an increasing 
fraction, reaching a maximum deviation between 10% and 20% average 
fraction (MAD of 8.66% in average). Subsequently, the distribution 
aligns with the polygon-based metrics, exhibiting a strong resemblance 
from approximately 40% average fraction, with a slight dispersion of the 
MAD values. The distribution indicates that single pixels with high de
viation can occur with predictions between 15% and 30% for the spe
cific tree species. These high MAD values of individual pixels are 
smoothed by the averaging in the polygon-based approach, which 
compensates for this effect. The third boxplot class in plot a) represents 
the deviation between five ensemble prediction. A notable reduction in 
the deviation can be observed in comparison to the MAD within a single 

ensemble model.
Fig. 9b) illustrates the correlation between the prediction error and 

MAD by emphasizing species fraction predictions with a high MAD in 
the scatterplot of predicted versus reference proportion. The Pearson 
correlation coefficient of 0.72 indicates a strong positive correlation. 
Most of these predictions fall within the range of 25 to 75%, as illus
trated in plot a). However, they are particularly prevalent in samples 
with a high prediction error.

4.4. Effect of training sample size

The development of the ANN’s model performance with increasing 
pure species training sample size can be observed in the error statistics 
graphs in Fig. 10. A swift improvement in MAE and RMSE is evident 
when increasing the sample size to ten pure samples for some species, 
including Beech, Oak, Maple, Douglas Fir and Pine (e.g. for Beech 
overall MAE from 22.82% to 12.53%). However, when the sample size is 
further increased, the improvement appears to stagnate for Beech, Oak, 
Maple and Pine with a sample size between 20 and 30. Some species 
start with comparatively low error values, and show only small re
ductions, such as Alder, Larch, Fir and the other DT class (e.g. other DT 
overall MAE from 9.13% to 6.90%). A minimum is reached at a sample 

Fig. 5. Tree species fraction map at two example validation polygons; a) and d) show the level 1 product of leaf type and ground fractions R/G/B color-coded; b) and 
e) show the HSV color-coded level 2 tree species fraction map. Hue is defined as color for the dominant tree species, saturation is defined as fraction of the dominant 
tree species, and value is defined as the sum background and shadow fraction (detailed description in the supplemental). The bar chart here refers to the predicted 
proportions in the validation polygons; c) and f) show the validation polygons and tree species distribution for validation based on the official forest information as a 
bar chart with the digital orthophoto; Orthophoto data (c) 04.06.2023; f) 02.07.2022): ©GeoBasis-DE / LVermGeoRP (2024), dl-de/by-2-0, http://www.lvermgeo. 
rlp.de
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Fig. 6. Validation of predicted tree species area with expected area based on tree species proportions based on the NFI (Thünen-Institute).

Fig. 7. Scatterplots of predicted proportions vs reference proportions for leaf types for deciduous trees (a) and coniferous trees (b); black line = regression line, red 
dashed line = 1:1 line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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size of 20, after which no further reduction can be detected.
Douglas Fir and Spruce continue improving when the sample size is 

increased to 30. Nevertheless, for all species, the effects of sample size 
become increasingly less pronounced as the number of training samples 
increases, e.g. Larch overall RMSE from 8.65% with 24 samples to 
7.09% with 34 samples.

The development of the R2 is similar across all species, with the 
exception of Alder, other DT class, and Fir in the overall metrics. Once 
again, a notable improvement is observed with the increase in sample 
size to ten (e.g. Oak from 0.10 to 0.59). The improvement for Beech, 
Oak, Maple, and Pine is considerably more rapid, while Larch is influ
enced by a reduction towards a sample size of 6, followed by the 
improvement. Regardless, all the aforementioned species are charac
terized by a saturation of R2 between a sample size of 20 and 30. The 
development is comparable to a root function, but with a positive 
exponent.

The development of the overall performance in R2 for Alder, other 
DT, and Fir and the presence-only performance in R2 for other DT appear 
to be noisy and more linear, with continued improvement to a sample 

size of 22 and stabilization between 24 and 34 samples. Also, the 
development of the R2 of Fir in the presence only performance is influ
enced by strong fluctuations. However, the development of the overall 
performance in R2 for Fir requires caution due to the relatively low 
number of available validation polygons in comparison to the high 
number of polygons of absence, which results in only minor improve
ments in overall performance.

5. Discussion

5.1. Tree species fraction accuracy

The combination of a regression approach with synthetically mixed 
training data from a densely reconstructed multispectral Sentinel-2 time 
series has enabled the prediction of different tree species within mixed 
pixels, and hence mixed forest stands. The validation demonstrates the 
ability to effectively predict the proportion in forest stands of needle- 
leafed and broadleaved species, as well as proportions of nine tree 
species and one remainder class. The effectiveness of separating decid
uous and coniferous forest (level 1 in this study) was already reported in 
previous studies using regression-based unmixing, although they 
focused on the distinction between different vegetation types outside of 
forests (Cooper et al., 2020; Okujeni et al., 2021). Nevertheless, 
although different classes were considered, as well as a different vali
dation design was used (pixel-based instead of polygon-based), the 
achieved error metrics are comparable to our level 1 assessment (e.g., 
MAE of 7.8% to 8.8% (Okujeni et al., 2021)), which provides a first 
qualitative indication that our approach performs in a similar way as 
published research, with the advancement of distinguishing between 
different tree species.

The validation of the individual tree species must be considered in a 
differentiated manner. To validate the metrics, two different approaches 
have been employed: an evaluation of the metrics in the overall context 
and in the presence-only context. In general our results show the typical 
patterns of underestimating higher reference proportions, which is 
evident in many studies that estimate sub-pixel fractions with machine 
learning-based approaches (Cooper et al., 2020; Guerschman et al., 
2015; Kowalski et al., 2022; Okujeni et al., 2021; Okujeni et al., 2018; 
Pham et al., 2024; Schug et al., 2020; Senf et al., 2020). This effect may 

Fig. 8. Scatterplots of predicted proportions vs reference proportions for individual tree species for deciduous tree species and for coniferous tree species; the black 
solid line represents the validation using all validation polygons (i.e. overall error model) and belongs to the top formula; the black dotted line represents validation 
using only validation polygons where the species is actually present (i.e. presence-only error model) and belongs to the second formula; the red dashed line represents 
the 1:1 relationship. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4 
Error metrics and R2 of the predicted proportions in the validation polygons for 
all tree species. Overall metrics include all available validation polygons and 
presence-only metrics only include polygons, where the respective species is 
present.

MAE [%] RMSE [%] R2

overall presence- 
only

overall presence- 
only

overall presence- 
only

Beech 9.12 12.8 14.21 17.44 0.83 0.76
Oak 8.01 14.61 13.88 20.52 0.77 0.7

Maple 3.83 11.78 7.69 16.89 0.72 0.78
Alder 3.17 11.64 6.75 18.5 0.51 0.61
Other 

DT
6.79 11.72 11.43 16.87 0.41 0.49

Spruce 5.41 9.73 9.6 13.9 0.9 0.88
Do. Fir 6.89 16.05 12.78 20.85 0.92 0.84

Pine 5.33 13.97 10.68 19.28 0.79 0.73
Larch 3.18 8.28 6.67 12.42 0.69 0.71

Fir 2.76 7.49 5.61 12.18 0.27 0.66
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Fig. 9. Distribution of model’s deviation and the correlation of deviation to the prediction error; a) Distribution of the average deviation dependent on the predicted 
fraction by an averaged model for individual pixels and within validation polygons, and the deviation between multiple averaged models; b) Distribution of the 
deviation within polygons for predicted average proportions of all tree species against the validation proportion.

Fig. 10. Development of model’s error statistic with increasing sample size for each tree species class, ground and shadow; (a-d): MAE, (e-h): RMSE, (i-l): R2. Two 
validation sets are shown, i.e., using all validation polygons (overall metrics – column one and two); and using only validation polygons of species’ presence 
(presence only metrics – column three and four). 614 Deciduous (columns one and three) and coniferous (columns two and four) species are shown separately for 
better differentiation.
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be amplified in this study due to specific properties of reference data. 
Near the edge of polygons, parts of the neighboring stand may extend 
into the validation polygon, which are not accounted for in the ground 
truth dataset. For all polygons with species borders, this effect may lead 
to a proportional reduction of the predicted present tree species. Parts of 
the stand may be excluded by the shape and neglected for validation, or 
parts of neighboring stands are included by the polygon and reduce the 
proportion of tree species of validation data.

In order to validate the resulting species proportions, the predicted 
area of ground and shadow were excluded, thereby reflecting the 
methodology of reference data collection of sampling crown area and 
thus maps the proportions of tree species’ crowns in the polygon. 
However, the occurrence of shadow is particularly prevalent in conif
erous stands (particularly Spruce, Douglas Fir and Fir) due to the pro
nounced crown structure of these trees, which promotes the formation of 
shadows (Lopatin et al., 2019), leading to a partial prediction of 
shadows on crowns instead of the ground. One potential solution to this 
issue could be to utilize 3D data, such as airborne laser scanning data, to 
effectively differentiate between shaded crowns and shaded ground. In 
instances where the crown is shaded, the predicted shadow fraction 
could be apportioned between the existing predicted tree species or the 
predicted dominant tree species. This could also lead to an improvement 
in the underestimation of coniferous species fractions.

In general, error metrics support the hypothesis that different tree 
species fractions can be predicted at stand level. Fir, however, appears to 
be an exception as it is characterized by substantially poorer metrics, 
especially regarding the overall situation, and indicates an error-prone 
fraction prediction. One reason for this may be the aforementioned 
low number of available validation polygons with Fir presence (72) 
compared to 2549 polygons of Fir absence (proportion of only 2.7%). No 
pure stands of Fir were part of the validation dataset as all of these 
needed to be included in the training dataset (Table 1). In addition, the 
distribution of the validation polygons is highly clustered: 42 of the 
polygons (58%) are located within one ecoregion, while 16 additional 
polygons (22%) are all located in another ecoregion. Additionally, the 
distribution of the training samples for this tree species was not as 
representative as with the other species. While the samples could be 
distributed across nine ecoregions, the samples within these could only 
be collected in a very clustered manner. Nevertheless, the scatterplot 
and error metrics of presence-only performance suggest that differenti
ation from other tree species is possible, in principle, with possibly 
better training and validation conditions.

While Spruce performed well in the polygon-based assessment, the 
overall predicted area of Spruce was seemingly underestimated in 
comparison to the state-wide NFI assessment. However, the reference 
area of Spruce requires careful consideration due to the acquisition time 
of NFI data, which is subject to potential bias from excessive, and 
temporally very dynamic forest disturbances caused by bark beetle (Ips 
typographus) since 2018 (Knutzen et al., 2025; Senf and Seidl, 2021).

The forest loss mask applied to our approach in coniferous stands 
encompasses an area of 673.94 km2, predominantly comprising Spruce 
stands with bark beetle damage from 2018 to 2023. Consequently, it can 
be assumed that parts of the NFI-based Spruce area estimation were 
already affected by bark beetle calamity during the investigation period 
of this study. With this in mind, the R2 between our prediction and the 
state-wide NFI assessment increases from 0.89 to 0.95 when excluding 
Spruce.

The validation of this study is based on stand-based forest planning 
data. Validation data for land-use fraction maps are often generated at a 
pixel level (Suess et al., 2018), or use conglomerates of a few connected 
pixels (e.g. Schug et al., 2020), and are often based on expert reference 
fraction estimation from high-resolution digital orthophoto (Okujeni 
et al., 2018; Okujeni et al., 2013). A pixel-based validation based on 
orthophotos is unfeasible, as even for experts, distinguishing nine 
different tree species and a rest class in high-resolution RBG-IR data is a 
challenging, and error-prone task to achieve. While introducing its own 

challenges and limitations, polygon-based validation is also still a 
common strategy for evaluating fraction maps (Cooper et al., 2020; 
Okujeni et al., 2021). Consequently, area or stand-based validations 
represent the optimal available option, but some assumptions and con
sequences for interpretation need to be considered. The validation of 
forest stands species’ proportions does not have the same meaning and 
does not necessarily imply similar accuracies at pixel level. The use of 
NFI plots may be a future option for a small scale assessment, although it 
cannot provide a validation at the pixel-level as well due to NFI plot sizes 
that vary angle count sampling dependent (Hill et al., 2018). Drawbacks 
for validation attempts using NFI data are already described, like e.g. 
GPS location accuracy, or the estimation of tree species shares in mixed 
pixels (Blickensdörfer et al., 2024; Bolyn et al., 2022; Freudenberg et al., 
2024), in addition to challenges related to infer a bird-eye view- 
compatible crown area from the individual trees in the plots. Never
theless, it would be valuable to develop sub-pixel validation strategies 
point-based NFI data in the future, especially given that the intercom
parison of our fraction estimates with state-wide area statistics from NFI 
are in good agreement.

A benefit of the employed stand-based forest planning data is the 
actuality that it can provide. We were able to use the most current data 
from the past years, i.e. from 2017 to 2022. Updates of this dataset are 
performed annually as new forest stands are surveyed. The surveying 
follows a ten-year repeat cycle, meaning each forest stand is revisited 
and updated once every ten years. A potential annual implementation 
would allow for the generation of a customized current validation data 
set for each year of prediction, by using the sampled stands of e.g. the 
last five years.

It is important to note that the used stand-based forest planning 
database was not generated for use in the field of remote sensing. The 
information on forest stand areas is based on expert estimation in the 
field, which represents a subjective estimation. Hence, the validation 
should not be overinterpreted and rather be seen as a meaningful 
intercomparison to prove the validity. Despite the assumption of high 
data precision, it might be possible that prediction results might yield 
more precise predictions than the estimations in the database. This, 
however, cannot be answered conclusively, and would require a 
tailored, and very laborious new reference dataset, which presents an 
interesting topic for future studies.

In traditional SMA, the estimation accuracy is negatively impacted 
by high correlation and high similarity between endmember spectra 
(Somers et al., 2011). This limitation persists when a regression-based 
approach with synthetically mixed training data augmentation is 
employed (Okujeni et al., 2013). The application of Sentinel-2 data al
lows for the implementation of a higher spectral resolution compared to 
Landsat data. Furthermore, the time series reconstruction method 
employed with a high temporal resolution enables the targeting of 
phenological characteristics and the differentiation of the selected tree 
species. This information has already led to the generation of improved 
results for tree species classifications (Grabska et al., 2019; Hill et al., 
2010; Kollert et al., 2021). The most crucial phenological phases are 
budburst in spring and leaf senescence (Hill et al., 2010; Klosterman and 
Richardson, 2017). Both phases can be targeted with the applied 
reconstruction method, which extends from March to November, even if 
image availability is limited in a given year. Based on the findings of the 
study, this has resulted in sufficiently robust differentiation for the nine 
selected tree species.

5.2. Ensemble approach and model variability

The use of an ensemble approach has already been demonstrated 
using synthetic training datasets and it has been proven to enhance the 
quality of results (Cooper et al., 2020; Okujeni et al., 2021; Okujeni 
et al., 2018). We have shown that a notable reduction in the deviation 
between prediction approaches can be achieved, which also contributes 
to the robustness of the resulting fraction prediction. However, the 
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implementation of a ten-model ensemble is computationally intensive. 
In the context of operational deployment, one potential solution for this 
would be to implement a model convergence functionality like it is 
already implemented in FORCE when using ensemble predictions, 
wherein additional models are only added to the ensemble if the pre
vious models are in insufficient agreement. This is performed at the pixel 
level and has the potential to substantially reduce processing time. 
Another approach would be to employ a single model with greater ca
pacity, which also could offer significant advantages in terms of 
computational efficiency and streamlined performance, as it could 
directly predict mean and variance without requiring ensemble aggre
gation. Future work could experiment with such models, incorporating 
training techniques like dropout or regularization to enhance robustness 
and reduce variability (Srivastava et al., 2014).

As we found a high correlation between MAD and prediction errors, 
the product of the deviation can be effectively utilized in operational 
contexts to convey a value of precision to forest managers. In forest areas 
exhibiting a high prediction deviation for a specific tree species, the 
predicted fraction may be error prone, necessitating the implementation 
of additional sampling procedures on site.

5.3. Operationality of the unmixing approach for forest management 
institutions

The development of the demonstrated method was driven by the idea 
to design a workflow that may be deployed operationally by forest 
management authorities. In future work, we deem it necessary to 
investigate the application of this method to a larger area, e.g., on the 
national scale. In principle, if enough training samples are available 
representing different species in different climatic conditions and 
phenological developments, we hypothesize that our method can be 
successfully transferred to larger areas. An alternative approach could 
be to expand the method by generating regionally tuned models in a 
similar fashion as Hermosilla et al. (2022). In this case, the relatively 
small number of training samples is advantageous, as it still ensures 
operability. It is likely that the number of required samples could be 
reduced per regional model, as a lower intraclass variability is expected.

Tree species classification applications require a much larger sample 
size per tree species than presented here, which is especially problematic 
for rare tree species (Blickensdörfer et al., 2024; Grabska et al., 2019; 
Hemmerling et al., 2021). This can more easily be circumvented by 
using the synthetic data augmentation method used here - although it 
cannot be completely prevented (as discussed with Fir). The number of 
training samples per class is still a crucial factor, but a notable 
improvement is achieved relatively early with already few training 
samples that are magnitudes below the requirements of classification 
architectures (Fig. 9). Furthermore, it is possible to iteratively assess 
whether a larger number of pure training samples may be necessary (as 
done in Fig. 9).

Available reference datasets, i.e. forest inventory data, are usually 
not generated with remote sensing requirements in mind (Kangas et al., 
2018). However, given the relatively small number of required samples, 
the development of an independent remote-sensing-tailored survey of 
well-suited pure populations distributed over the study area would be a 
viable and realistic option. Such a database could potentially be 
implemented by the forest administration to boost operational suit
ability even further (e.g., by specifically adding pure locations of un
derrepresented species), especially given that single sufficiently large 
patches of a pure species would suffice. In principle, it would also be 
possible to include other rare tree species as individual class, such as 
birch, although their inclusion in the model needs to be verified with 
regards to separability between the other classes. If such a database 
would be implemented, we suggest checking them on an annual basis 
with DOPs to prevent disturbances and diseases within the trainings 
samples. Again, this is supported by the small sample size required.

It is further possible to transfer the methodology to other sites, as the 

Sentinel-2 data and the Copernicus forest mask (Copernicus - Land 
Monitoring Service, 2024) for Europe are open data. Global or local 
alternatives for a forest mask need to be considered on different conti
nents. Furthermore, the FORCE framework (Frantz, 2019), with the 
implemented interpolation method (https://github.com/davidfrant 
z/force-udf/tree/main/rstats/ts/spline-reconstruction), and the com
plete workflow used in this study (https://github.com/davidklehr/tr 
ee-species-unmixing) are also freely available. It is necessary to iden
tify training samples of pure tree species, potentially through the utili
zation of local forest surveys or an independent set of temporally 
consistent pure training samples as previously described. The necessity 
for high quality validation data may be somewhat challenging, 
depending on the availability of data on species distribution from forest 
institutions.

5.4. Outlook

Building upon this study, some key avenues for future research and 
development are planned. First, the approach will be extended to a 
national scale, enabling a broader evaluation of its applicability and 
operational feasibility across diverse regions. This expansion will allow 
for the integration of the methodology into large-scale forest monitoring 
systems, enhancing its relevance for national forestry management. 
Additionally, the use of the NFI as a reference dataset is a promising 
direction for future work. The NFI offers both opportunities and chal
lenges, as it can provide more detailed and comprehensive forest in
formation. Integrating this data could lead to the prediction of a wider 
range of tree species, potentially yielding more stable and reliable re
sults and enabling the method to be implemented nationwide. Finally, 
further refinement of the model architecture is planned. To advance the 
current ensemble approach, the development of a more complex and 
robust single model architecture is expected to reduce computational 
costs while maintaining or improving predictive accuracy. These future 
directions aim to strengthen the operational capacity of the approach, 
broaden its applicability, and enhance its robustness for large-scale, 
real-world forestry applications.

6. Conclusion

The overreaching goal of this study was to assess the potential of 
mapping sub-pixel tree species mixtures in mixed temperate forests, 
given the size-limitations of the available reference information. The 
findings demonstrate that neural network regression in combination 
with synthetically mixed training data is an effective approach for pre
dicting sub-pixel tree species fractions of nine distinct species and one 
‘other species’ class, along with a background and shadow class. By 
using a densely reconstructed time series of ten Sentinel-2 bands, 
phenological and spectral characteristics between tree species are tar
geted directly for differentiation. The resulting tree species fraction 
maps were validated with tree species proportions in existing mixed 
forest stand polygons and provide information regarding the composi
tion of tree species in these stands, which can be complex in temperate 
mixed forests. The maps can provide valuable information for the 
management, development, and protection of forests. A key advantage 
of this approach is its minimal requisite number of pure training pixels, 
in comparison to conventional classification methods. This makes it an 
easily accessible solution for operational use in forest monitoring and 
management. The application of an ensemble approach can reduce 
inter-model deviation, and the resulting per-species deviation maps can 
provide valuable insights into prediction certainty due to the correlation 
between prediction error and model deviation.
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